Using the results of $[1,2]$, we have examined and studied the equations of plane strain of a rigid-plastic anisotropic body. We have derived the characteristics and relations for the characteristics. As an example we have solved the Prandtl problem of the depression of a stamp in a rigid-plastic anisotropic medium. We have investigated the dependence of the limit load on the properties of the anisotropic body.

To simplify the discussion of the material we assume that in the fixed (x, y) coordinate system the anisotropic body obeys Hooke's law in the form*

$$
\begin{equation*}
\varepsilon_{x}=a_{11} \sigma_{x}-a_{12} \sigma_{y}, \varepsilon_{y}=-a_{12} \sigma_{x}+a_{22} \sigma_{y}, \varepsilon_{x y}=a_{33} \tau_{x y} \tag{1}
\end{equation*}
$$

where the $a_{i j}$ are the elastic compliances $\left(a_{i j}>0\right)$, and $a_{11} \frac{1}{\mathcal{F}} a_{22}$.
We determine the eigenvalues and characteristic tensors $T_{k}\left(T_{k}=\left\|t_{i j}^{k}\right\|\right)$ of the elastic compliance tensor [1]:

$$
\begin{gathered}
\lambda_{1}=\frac{a_{11}+a_{22}}{2}+\sqrt{\left(\frac{a_{11}-a_{22}}{2}\right)^{2}+a_{12}^{2}}, \quad \lambda_{2}=\frac{a_{11}+a_{22}-\sqrt{\left(\frac{a_{11}-a_{22}}{2}\right)^{2}+a_{12}^{2}}, \quad \lambda_{3}=a_{33}}{2}, \\
\mathrm{~T}_{1}: \quad t_{x}^{1}= \pm \frac{\sqrt{2} a_{12}}{\sqrt{a_{12}^{2}+\left(a_{11}-\lambda_{1}\right)^{2}}}, \quad t_{y}^{1}= \pm \frac{\sqrt{2}\left(a_{11}-\lambda_{1}\right)}{\sqrt{a_{12}^{2}+\left(a_{11}-\lambda_{1}\right)^{2}}}, \quad t_{x y}^{1}=0, \\
\mathrm{~T}_{2}: \quad t_{x}^{2}= \pm \frac{\sqrt{2} a_{12}}{\sqrt{a_{12}^{2}+\left(a_{11}-\lambda_{2}\right)^{2}}}, \quad t_{y}^{2}= \pm \frac{\sqrt{2}\left(a_{11}-\lambda_{2}\right)}{\sqrt{a_{12}^{2}+\left(a_{11}-\lambda_{2}\right)^{2}}}, \quad t_{x y}^{2}=0, \\
\mathrm{~T}_{3}: t_{x}^{3}=t_{y}^{3}=0, \quad t_{x y}^{3}= \pm 1 .
\end{gathered}
$$

It can be shown that

$$
\begin{equation*}
\frac{1}{2} t_{i j}^{h} t_{i j}^{l}=\delta_{k l} \tag{2}
\end{equation*}
$$

since $a_{12}-\lambda_{1}=\lambda_{2}-\alpha_{22} .+$
It follows from (2) that the characteristic tensors T_{k} do not depend on the values of the stress tensor T_{σ} and the strain tensor T_{E}. It is natural to assume that the orientations of the basic tensors T_{k} in tensor space are preserved even when plastic deformations appear [2]. This hypothesis will be important later in formulating the equations of a rigid-plastic anisotropic body.

We expand the stress tensor T_{σ} and the strain tensor T_{e} in terms of the basis tensors T_{k} :

$$
\mathrm{T}_{\sigma}=S_{k} \mathrm{~T}_{k}, \mathrm{~T}_{\mathrm{e}}=Э_{\boldsymbol{k}} \mathrm{T}_{k},
$$

where
*The assumption of Hooke's law in the form (1) does not limit the generality of the subsequent developments.
†Henceforth for definiteness we choose only the upper sign in Eqs. (2).

[^0]\[

$$
\begin{aligned}
& S_{1}=\frac{1}{2}\left(\sigma_{x} t_{x}^{1}+\sigma_{y} t_{y}^{1}\right), \quad S_{2}=\frac{1}{2}\left(\sigma_{x} t_{x}^{2}+\sigma_{y} t_{y}^{2}\right), \quad S_{3}=\tau_{x y}, \\
& \ni_{1}=\frac{1}{2}\left(\varepsilon_{x} t_{x}^{1}+\varepsilon_{y} t_{y}^{1}\right), \quad \quad_{2}=\frac{1}{2}\left(\varepsilon_{x} t_{x}^{2}+\varepsilon_{y} t_{y}^{2}\right), \quad \ni_{3}=\varepsilon_{x y},
\end{aligned}
$$
\]

By virtue of the definition of the eigenvalues and the characteristic tensors T_{k} of the elastic compliance tensor we have

$$
\begin{equation*}
\vartheta_{k}=\lambda_{k} S_{h} . \tag{3}
\end{equation*}
$$

Different forms of the yield condition of an anisotropic medium and different configurations of a rigid-plastic anisotropic body are possible depending on the relations among the eigenvalues λ_{k}.

Let us consider the most typical situations.
A. Suppose $\lambda_{1} \frac{1}{\tau} \lambda_{1} \neq \lambda_{3}$, and that the yield condition is satisfied for deformation along the T_{1} axis

$$
\begin{equation*}
\left|S_{1}\right|=k \text { or } \frac{1}{2}\left(\sigma_{x} t_{x}^{1}+\sigma_{y} t_{y}^{1}\right)= \pm k \tag{4}
\end{equation*}
$$

For a rigid-plastic material we also have equations for the strains of the form

$$
\begin{equation*}
\exists_{2}=\ni_{3}=0 \quad \text { or } \quad \frac{1}{2}\left(\varepsilon_{x} t_{x}^{2}+\varepsilon_{y} t_{y}^{2}\right)=0, \quad \varepsilon_{x y}=0 \tag{5}
\end{equation*}
$$

In this way we obtain separate statically determinate problems for the stresses and displacements [3].

The characteristics of the system of equilibrium equations and the yield condition (4) have the form

$$
\begin{equation*}
\frac{d y}{d x}= \pm \sqrt{-\frac{t_{x}^{1}}{t_{y}^{1}}} \tag{6}
\end{equation*}
$$

The relations for the characteristics are $d \sigma y=-d_{\tau} d y / d x$. By considering system (5) for the displacements, we obtain characteristics coinciding with (6), and relations for the characteristics

$$
d u=-d v d y / d x
$$

B. Suppose $\lambda_{1}=\lambda_{3}$, the yield condition has the form [2]

$$
\begin{equation*}
S_{1}^{2}+S_{3}^{2}=k^{2} \text { or } \frac{1}{4}\left(\sigma_{x} t_{x}^{1}+\sigma_{y} t_{y}^{1}\right)^{2}+\tau_{x y}^{2}=h^{2} \tag{7}
\end{equation*}
$$

and the equations for the strains for the rigid-plastic body are such that

$$
\begin{equation*}
\partial_{3} / S_{3}=Э_{1} / S_{1}, \quad \ni_{2}=0 \text { or } \varepsilon_{x y} / \tau_{x y}=\left(\varepsilon_{x} t_{x}^{1}+\varepsilon_{y} t_{y}^{1}\right), \quad \varepsilon_{x} t_{x}^{2}+\varepsilon_{y} t_{y}^{2}=0 \tag{8}
\end{equation*}
$$

Condition (7) expresses the fact that the stress vector on areas equally inclined to the principal axes of the tensor $S_{1} T_{1}+S_{3} T_{3}$ remains constant; the first of conditions (8) means that the strain vector on the indicated areas is collinear with the stress vector; the second of conditions (8) indicates that the strain vector on areas equally inclined to the principal axes of the tensor T_{2} varies elastically.

We note that for the usual Hooke's law $\left(\alpha_{11}=\alpha_{22}\right) t_{x}^{1}=t_{x}^{2}=t_{y}^{2}=-t_{y}^{1}=1$, and $\lambda_{1}=\lambda_{3}$, i.e., this is a special example of the case under consideration.

Supplementing the equilibrium equations by the yield condition (7), and introducing the variables σ and θ in the standard way:

$$
\tau_{x y}=k \cos 2 \theta, \quad \frac{1}{2}\left(\sigma_{x} t_{x}^{1}+\sigma_{y} t_{y}^{1}\right)=-k \sin 2 \theta, \quad \frac{1}{2}\left(\sigma_{x} t_{x}^{2}+\sigma_{y} t_{y}^{2}\right)=\sigma
$$

Fig. 1
we obtain a system of two nonlinear partial differential equations of the first order for the unknown functions $\sigma(x, y)$ and $\theta(x, y)$. This system is of the hyperbolic type. The characteristic equation has the form

$$
\begin{equation*}
\mu^{3}-2 \mu \frac{\operatorname{ctg} 2 \theta}{t_{y}^{1}}+\frac{t_{x}^{1}}{t_{y}^{1}}=0, \text { where } \mu=\frac{d y}{d x} . \tag{9}
\end{equation*}
$$

It follows from (9) that the characteristics generally do not intersect one another at right angles: if $\alpha_{11}>\alpha_{22}, t_{x}^{1} / t_{y}^{1}<-1$, and if $\alpha_{11}<a_{22}, t_{x}^{1} / t_{y}^{1}>-1$.

We now present expressions of the characteristics and relations for the characteristics:

$$
\mu_{1,2}=\frac{\operatorname{ctg} 2 \theta \mp \sqrt{\operatorname{ctg}^{2} 2 \theta-t_{x}^{1} t_{y}^{1}}}{t_{y}^{1}}, \quad \sigma+\frac{k \sin 2 \theta}{2}\left(\frac{t_{y}^{2}}{t_{y}^{1}}+\frac{t_{x}^{\dot{2}}}{t_{x}^{1}}\right) \pm \frac{k \Delta}{2 t_{x}^{1} t_{y}^{1}} E(2 \theta, x)=\xi_{1,2},
$$

where $\Delta=t_{x}^{1} t_{y}^{2}-t_{y}^{1} t_{x}^{2}=-\frac{2 t_{x}^{2}}{t_{y}^{1}}, \quad x=\sqrt{1+t_{x}^{1} t_{y}^{1}}$, and E is the elliptic integral of the second kind.
We now direct our attention to Eqs. (8). Expressing the strains in terms of the displacements, we obtain the equations

$$
\frac{\partial u}{\partial x} t_{x}^{2}+\frac{\partial v}{\partial y} t_{y}^{2}=0, \quad \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=-\left(\frac{\partial u}{\partial x} t_{x}^{1}+\frac{\partial v}{\partial y} t_{y}^{1}\right) \operatorname{ctg} 2 \theta,
$$

which are also of the hyperbolic type with characteristics which coincide with those of the system of differential equations for the stresses. The relations for the characteristics have the form

$$
d u=-d v d y^{\prime} d x
$$

We note that in the case under consideration, just as in [4], simple stressed states occur.

To illustrate the application of the relations derived, we solve the Prandtl problem of the impression of a stamp in a rigid-plastic anisotropic medium. We assume that the plastic medium is bounded by a plane, and that there is no friction on the surface of contact. In the limiting state the stamp is moved downward (Fig. 1). It is required to determine the limit load corresponding to the onset of plastic flow. We present a solution similar to Prandtl's. The distribution of slip lines may be of two types, depending on the relation between the elastic compliances α_{13} and α_{22} (Fig. la, b): In the first case ($\alpha_{11}>\alpha_{22}$) the characteristics approach the free surface at an angle less than 45° to the x axis; in the second case $\left(\alpha_{11}>\alpha_{22}\right)$ this angle is more than 45°. The limit load in both cases is calculated from the formula

$$
P_{*}=-\frac{4 a k}{t_{y}^{1}}\left(1+E\left(\frac{\pi}{2}, x\right)\right)
$$

It is easy to show that the limit load for fixed k is a function of the parameter $\alpha=$ $2 \alpha_{12} /\left(\alpha_{11}-\alpha_{22}\right)$. The limit load reaches extreme values as $\alpha \rightarrow \pm 0:$ as $\alpha \rightarrow+0$, the limit load increases without bound (Fig. lb); as $\alpha \rightarrow-0$ the limit load approaches $4 \sqrt{2} \alpha \mathrm{k}$ (Fig. 1a); as $\alpha \rightarrow \pm \infty$ we obtain the loading obtained by Prandtl.
C. Suppose $\lambda_{1}=\lambda_{2}=\lambda_{3}$. In this case $\alpha_{11}=\alpha_{22}=\alpha_{33}, \alpha_{12}=0$, and the orthonormal tensor basis T_{k} is not uniquely determined by Eqs. (2). The following can be taken as the orthonormal tensor basis:

$$
\mathrm{T}_{1}: \quad t_{x}^{1}--t_{y}^{1}=1, \quad t_{x y}^{1}=0, \quad \mathrm{~T}_{2}: \quad t_{x}^{2}=t_{y}^{2}=1, \quad t_{x y}^{2}=0, \quad \mathrm{~T}_{3}: \quad t_{x}^{3}=t_{y}^{3}=0, \quad t_{x y}^{3}=1 .
$$

In this case the yield condition will have the form

$$
\frac{1}{4}\left(\sigma_{x}+\sigma_{y}\right)^{2}+\frac{1}{4}\left(\sigma_{x}-\sigma_{y}\right)^{2}+\tau_{x y}^{2}=k^{2} .
$$

We introduce the variables θ and α in the following way:

$$
\begin{equation*}
\left(\sigma_{x}+\sigma_{y}\right) / 2=k \sin \alpha,\left(\sigma_{x}-\sigma_{y}\right) / 2=-k \sin 20 \cos \alpha, \tau_{x y}=k \cos 20 \cos \alpha . \tag{10}
\end{equation*}
$$

Substituting (10) into the equilibrium equations, we obtain a system of two nonlinear partial differential equations of the first order for the unknown equations $\theta(x, y)$ and $\alpha(x, y)$. This system is of the hyperbolic type for $-\pi / 4 \leqslant \alpha \leqslant \pi / 4$. Its characteristics and the relations for the characteristics are the following:

$$
\begin{gathered}
\mu_{1,2}=\frac{-\cos 2 \theta \cos \alpha \pm \sqrt{\cos 2 \alpha}}{\sin \alpha+\sin 2 \theta \cos \alpha}, 2 \theta= \pm(-u+\sqrt{2} \operatorname{arctg}(\sqrt{2} \operatorname{tg} u))+\text { const } \\
\text { where } u=\arcsin (\operatorname{tg} \alpha) .
\end{gathered}
$$

Expressing the collinearity condition for the strain and stress vectors on surfaces which are equally inclined to the principal axes of the tensor T_{σ}, we have

$$
\frac{\varepsilon_{x}+\varepsilon_{y}}{2 \varepsilon_{x y}}=\frac{\sigma_{x}+\sigma_{y}}{2 \tau_{x y}}, \frac{\varepsilon_{x}-\varepsilon_{y}}{2 \varepsilon_{x y}}=\frac{\sigma_{x}-\sigma_{y}}{2 \tau_{x y}} .
$$

Substituting the expressions for the strains in terms of the displacements, we obtain a system of two differential equations for the displacements. This system is also of the hyperbolic type. Its characteristics coincide with those of the system of differential equations for the stresses, and the relations for the characteristics have the same form as in the cases analyzed earlier:

$$
d u=-d v d y / d x
$$

The examples presented show how diverse the plastic properties of anisotropic media can be. These properties are dictated by the structural features of the medium, which, in the first approximation, are determined by the elastic compliance matrix.

LITERATURE CITED

1. K. A. Lur'e, "Some problems of the optimum bending and elongation of elastic plates," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6 (1979).
2. A. I. Chanyshev, "Plasticity of anisotropic media," Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 149 (1984).
3. L. M. Kachanov, Fundamentals of the Theory of Plasticity [in Russian], Nauka, Moscow (1969).
4. S. A. Khristianovich, "A two-dimensional problem of the mathematical theory of plasticity under external forces specified on a closed contour," Mat. Sb. Nov. Ser., 1, No. 4 (1936).

[^0]: Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 151-154, September-October, 1984. Original article submitted July 22, 1983.

