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Using the results of [i, 2], we have examined and studied the equations of plane strain 
of a rigid-plastic anisotropic body. We have derived the characteristics and relations for 
the characteristics. As an example we have solved the Prandtl problem of the depression of 
a stamp in a rigid-plastic anisotropic medium. We have investigated the dependence of the 
limit load on the properties of the anisotropic body. 

To simplify the discussion of the material we assume that in the fixed (x, y) coordinate 
system the anisotropic body obeys Hooke's law in the form* 

8 x ~ a l l ~  x - -  al2Oy ~ 8y  = --a12O x ~ a22~y ~ 8 y : a33%xy, 

where t he  a i j  a r e  t he  e l a s t i c  compl i ances  ( a i j  > 0 ) ,  and a~1 # a22.  

We determine the eigenvalues and characteristic tensors Tk (Tk = 

compliance tensor [i]: 

(1) 

] ] t k . ] l )  o f  t he  e l a s t i c  
i3 

F (  ) r  a o, ~1 -- all -~ a22 ~ all - 2+ )~2 -- 2 2 ~ a22 a2Z , a 1 1 - } - a 2 2 -  a11~ ""J +a12' ~3=%3' 

"V ~ a12 1 _ _  _}. V ~ (all - -  ~'1) 1 _ _  

,., ~'y--__ V a122@ " txy--0, T~. t~ = +_ Fa~2+ ( ~ - -  ~)2 (a~_ X~)~ 

T2: t~ = -~ V 2  al~ , 2 V 2  ( a l l -  ~2) , 2 = 0 ,  - V 4 2 +  ( , , , -  ~2) ~ t~ = ~ F 4 2 +  ( ~ -  z2) ~ ~ 

3 - - + t .  

It can be shown that 

t ,~ ,t (2) 

since a11 -- %1 = %2 -- a22.* 

It follows from (2) that the characteristic tensors T k do not depend on the values of 
the stress tensor T O and the strain tensor T s. It is natural to assume that the orientations 
of the basic tensors T k in tensor space are preserved even when plastic deformations appear 
[2]. This hypothesis will be important later in formulating the equations of a rigid-plastic 

anisotropic body. 

We expand the stress tensor T a and the strain tensor T e in terms of the basis tensors Tk: 

T a= SkT k, T e= DkTk, 

where 

*The assumption of Hooke's law in the form (i) does not limit the generality of the subse- 

quent developments. 
*Henceforth for definiteness we choose only the upper sign in Eqs. (2). 
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By virtue of the definition of the eigenvalues and the characteristic tensors T k of the 

elastic compliance tensor we have 

ah = %hSh" (3) 

Different forms of the yield condition of an anisotropic medium and different configura- 
tions of a rigid-plastic anisotropic body are possible depending on the relations among the 

eigenvalues %k- 

Let us consider the most typical situations. 

A. Suppose ~I # ~i # ~a, and that the yield condition is satisfied for deformation 

along the T~ axis 

I i (4) i s, 1= k or -~ ( ~  + ~,~) = • k. 

For a rigid-plastic material we also have equations for the strains of the form 

(5) a~=a~=o or - r ( ~ ' ~ + ~ D  =~ ~ = 0 .  

In this way we obtain separate statically determinate problems for the stresses and 

displacements [3]. 

The characteristics of the system of equilibrium equations and the yield condition (4) 
have the form 

§ i / 2  s (6) 
d,  - V t~ 

The relations for the characteristics are day = --d%dy/dx. By considering system (5) 
for the displacements, we obtain characteristics coinciding with (6), and relations for 
the characteristics 

d u =  --dvdy/dx. 

B. Suppose ~i = ~3, the yield condition has the form [2] 

1 1 1 2 2 = k 2  8~+8~=h 2 o r  4 (%tx+%ty) +*xy , ( 7 )  

and the equations for the strains for the rigid-plastic body are such that 

= t ~ �9 ~ ( 8 )  

C o n d i t i o n  (7)  e x p r e s s e s  t h e  f a c t  t h a t  t h e  s t r e s s  v e c t o r  on a r e a s  e q u a l l y  i n c l i n e d  t o  t h e  
p r i n c i p a l  a x e s  o f  t h e  t e n s o r  S~T~ + S3Ta r e m a i n s  c o n s t a n t ;  t h e  f i r s t  o f  c o n d i t i o n s  (8)  means  
t h a t  t h e  s t r a i n  v e c t o r  on t h e  i n d i c a t e d  a r e a s  i s  c o l l i n e a r  w i t h  t h e  s t r e s s  v e c t o r ;  t h e  s e c o n d  
o f  c o n d i t i o n s  (8)  i n d i c a t e s  t h a t  t h e  s t r a i n  v e c t o r  on a r e a s  e q u a l l y  i n c l i n e d  t o  t h e  p r i n c i p a l  
a x e s  o f  t h e  t e n s o r  T2 v a r i e s  e l a s t i c a l l y .  

, 2 t; = --t; and ~ = ~3, We note that for the usual Hooke's law ( a l l  = a 2 2 )  t x = t x = = i, 
i.e.~ this is a special example of the case under consideration. 

Supplementing the equilibrium equations by the yield condition (7), and introducing the 
variables o and 0 in the standard way: 

t 1 1 2 ~,=koo~20, ~ ( ~ x ~ + ~ , ~ ) = - k ~ 2 0 ,  - ~ ( ~ + ~ D = ~ ,  
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Fig. i 

we obtain a system of two nonlinear partial differential equations of the first order for the 
unknown functions o(x, y) and O(x, y). This system is of the hyperbolic type. The character- 
istic equation has the form 

ctg 20 t~ 
~--2~+~:O, where~= ~'dv (9) 

It follows from (9) that the characteristics generally do not intersect one another at 
i i t l / . i  r i gh t  angles: i f  a l l  > a22, t x / t y  < -- i ,  and i f  a l l  < a22, X.Cy > --i .  

We now present expressions of the characteristics and relations for the characteristics: 

- -  -x v o + k s i n  20 v + + E (20, :r = ~1,2' 

ty 

w h e r e  A = t i t  ~ -  ~lt2 2t~ - -x-u rx=--t~' ~----fF+ txlt I , and E is the elliptic integral of the second kind. 

We now direct our attention to Eqs. (8). 
menta, we obtain the equations 

Ou 2 �9 Op ~ ==0,  Ou 
0--7 t~ + ~-v t~ ~-F + 

Expressing the strains in terms of the displace- 

Ox -- ~-i tx t ~ -  t ctg  20, 

which are also of the hyperbolic type with characteristics which coincide with those of the 
system of differential equations for the stresses. The relations for the characteristics have 
the form 

du = - - d v d y / ~ .  

We note that in the case under consideration, just as in [4], simple stressed states 

occur. 

To illustrate the application of the relations derived, we solve the Prandtl problem of 
the impression of a stamp in a rigid-plastic anisotropic medium. We assume that the plastic 
medium is bounded by a plane, and that there is no friction on the surface of contact. In 

the limiting state the stamp is moved downward (Fig. i). It is required to determine the 
limit load corresponding to the onset of plastic flow. We present a solution similar to 
Prandtl's. The distribution of slip lines may be of two types, depending on the relation 
between the elastic compliances a11 and a22 (Fig. la, b): In the first case (a11 > a22) the 
characteristics approach the free surface at an angle less than 45 ~ to the x axis; in the 
second case (all > a22) this angle is more than 45 ~ . The limit load in both cases is cal- 
culated from the formula 

P , = - - ~ ( ~  i + E  --f- ,~ . 
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It is easy to show that the limit load for fixed k is a function of the parameter a = 
2a~2/(a~ -- a22). The limit load reaches extreme values as ~ + +0: as ~ + +0, the limit 
load increases without bound (Fig. ib); as ~ § --0 the limit load--approaches 4 2/~k (Fig. la); 
as ~ § +~ we obtain the loading obtained by Prandtl. 

C. Suppose %~ = %2 = %3. In this case a~ = a=2 = a3~, a~2 = 0, and the orthonormal 
tensor basis T k is not uniquely determined by Eqs. (2). The following can be taken as the 
orthonormal tensor basis, 

I 1 ~, 1 = 0 ,  T~: ~ 2:1,  2 ~t~=O, = TI: t x - - - t y  t~u . t x = t  u txu=O, T~: t~ t~u t. 

In this case the yield condition will have the form 

I I -- ~k2 4 (~ + %)2 + ~_ (~ _ %)~ + ~v " 

We introduce the var iables  e and ~ in the following way: 

o ' _ : k cos20cosa. (I0) ( x T ~y)/2 : ks in~ ,  (~x--  ~y)/2 = --ks in  20cosa, Txu 

S u b s t i t u t i n g  (10)  i n t o  t h e  e q u i l i b r i u m  e q u a t i o n s ,  we o b t a i n  a s y s t e m  o f  two n o n l i n e a r  
p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  o f  t h e  f i r s t  o r d e r  f o r  t h e  unknown e q u a t i o n s  0 ( x ,  y)  and  
a ( x ,  y ) .  T h i s  s y s t e m  i s  o f  t h e  h y p e r b o l i c  t y p e  f o r - v / 4  ~ a < v / 4 .  I t s  c h a r a c t e r i s t i c s  and  
t h e  r e l a t i o n s  f o r  t h e  c h a r a c t e r i s t i c s  a r e  t h e  f o l l o w i n g :  

~}1,2 = 
- -  cos 20 cos a • ~ / c o ~  , 20 = _+ (-- u + V 2  arctg(V2 tg u)) + coast, 

sin ~ + s i n  20 cos 
where u = arcsin (tg ~). 

Expressing the collinearitycondition for the strain and stress vectors on surfaces 
which are equally inclined to the principal axes of the tensor To, we have 

~x-~-ey ~x~-~y e x - - e  u ~x - -~y  
2exy - -  2Txy ' 2gxy - -  2~xy 

Substituting the expressions for the strains in terms of the displacements, we obtain a 
system of two differential equations for the displacements. This system is also of the 
hyperbolic type. Its characteristics coincide with those of the system of differential 
equations for the stresses, and the relations for the characteristics have the same form as 
in the cases analyzed earlier: 

du = - - d v ~ / ~ .  

The e x a m p l e s  p r e s e n t e d  show how d i v e r s e  t h e  p l a s t i c  p r o p e r t i e s  o f  a n i s o t r o p i c  m e d i a  c a n  b e .  
These  p r o p e r t i e s  a r e  d i c t a t e d  by  t h e  s t r u c t u r a l  f e a t u r e s  o f  t h e  med ium,  w h i c h ,  i n  t h e  f i r s t  
a p p r o x i m a t i o n ,  a r e  d e t e r m i n e d  by  t h e  e l a s t i c  c o m p l i a n c e  m a t r i x .  
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